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Figure 1: Overview. We present a diffusion-based model for structured pattern expansion. Our approach enables the generation of large-
scale, high-quality tileable patterns by extending a user-drawn input, shown within the black boxes, to an arbitrarily sized canvas. Our
method extends the input pattern while faithfully following the user input and producing coherently structured and yet non-repetitive images.

Abstract

Recent advances in diffusion models have significantly improved the synthesis of materials, textures, and 3D shapes. By condi-
tioning these models on text or images, users can guide the generation, reducing the time required to create digital assets. In
this paper, we address the synthesis of structured, stationary patterns, where diffusion models are generally less reliable and,

more importantly, less controllable.

Our approach leverages the generative capabilities of diffusion models specifically adapted to the pattern domain. It enables
users to exercise direct control over the synthesis by expanding a partially hand-drawn pattern into a larger design while
preserving the structure and details of the input. To enhance pattern quality, we fine-tune an image-pretrained diffusion model
on structured patterns using Low-Rank Adaptation (LoRA), apply a noise rolling technique to ensure tileability, and utilize a
patch-based approach to facilitate the generation of large-scale assets.

We demonstrate the effectiveness of our method through a comprehensive set of experiments, showing that it outperforms
existing models in generating diverse, consistent patterns that respond directly to user input.

CCS Concepts
» Computing methodologies — Texturing;

1. Introduction

Hand-drawn structured patterns are central to computer graphics,
with applications spanning various domains in design and digital
art. Creating these patterns remains a complex and time-consuming
task that requires specialized expertise. Al-assisted content creation
offers the potential to simplify this process. For instance, learning-
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based image synthesis methods have shown impressive genera-
tive capabilities for natural images [RBL*22; BDS19; KALL18;
KLA*20; PEL*23]. However, their application to pattern-like syn-
thesis has primarily focused on unstructured, realistic materi-
als [ZZB*18; ZCXH23; ZXL*24; HGZ*23; VSPS24; VMR*24;
VD24; LPdC24], leaving the creation of structured patterns an un-
derexplored task. In contrast, the synthesis of highly structured


https://orcid.org/0000-0001-7182-6342
https://orcid.org/0000-0001-5009-4365
https://orcid.org/0000-0003-4861-9809

20f12 M. Riso, G. Vecchio and F. Pellacini / Structured Pattern Expansion with Diffusion Models

In-domain samples Out-of-domain sampl

i ]l D
1} ) B B 1 |
I T T 1T .
) |

Figure 2: We focus on structured, stationary, patterns in a hand-
drawn style, characterized by repeated recognizable shapes drawn
in flat colors (left). Unstructured or aperiodic patterns, as well as
photorealistic textures, fall outside the scope of this paper (right).

vector patterns has been explored by automatically discovering
and exploiting their structure, geometry, and topology [TWY*20;
RGF*20; TWZ22], or by optimizing the procedural parameters
of differentiable vector patterns to match a sketch or a viewport
edit [RP23; RSP22].

Our work focuses on structured patterns with a hand-drawn ap-
pearance, characterized by the repetition of sketch-like shapes filled
with solid colors and defined by sharp, crisp edges. Formally, these
structured patterns consist of stationary repetitions of recogniz-
able shapes, each with individual variations, and are drawn with
piecewise-constant colors. Examples of these patterns are shown
throughout the paper, with Fig. 2 also highlighting examples of tex-
tures outside of our scope. We focus on this type of pattern for their
importance in design applications and the general lack of learning-
based methods addressing its synthesis.

Our approach leverages Latent Diffusion Models [RBL*22] as a
foundation for the synthesis. Although these models have achieved
significant advances in natural image generation, they are not op-
timized for generating structured patterns. One key limitation is
that the synthesized patterns often lack quality, as these models
are typically trained to generate photorealistic images with unstruc-
tured, chaotic textures and high-frequency, stochastic color vari-
ations. When applied to structured patterns, these methods often
fail to maintain the inherent structure, sharpness, and cohesive vi-
sual style of the patterns. Furthermore, design applications often
require precise pattern control by users, often lacking in genera-
tive approaches, generally focusing on text-to-image synthesis. Al-
though high-level conditioning may be sufficient for natural image
synthesis, specifying the exact structure and appearance of a pattern
is much more challenging. Even when using images as condition-
ing inputs, existing methods perform inconsistently on structured
patterns within our domain. To address this gap in the literature and
provide artists with a user-friendly yet controllable content creation
tool, we propose a diffusion-based model specifically designed for
the synthesis and expansion of structured stationary patterns. In
particular, we leverage the extensive knowledge embedded in large-
scale models, such as Stable Diffusion [RBL*22; PEL*23], and
adapt it to the pattern domain by training a “lightweight” Low-Rank
Adaptation (LoRA) [HSW#22]. This approach reduces the compu-

tational and data requirements of training a diffusion model from
scratch, while retaining the expressive power of models trained on
large-scale datasets like LAION [SVB*21]. To this end, we collect
a dataset of procedurally designed patterns that we used to train our
LoRA.

We base our architecture on an inpainting pipeline, which sup-
ports the expansion of a partial, hand-drawn input sketch into a
larger pattern while preserving its structural integrity and details.
During inference, we leverage noise rolling and patch-based syn-
thesis to produce large-scale, tileable patterns, at high quality in
a reliable way. These design choices allow us to generate large-
scale, tileable patterns that accurately follow the input sketch, while
adding a limited degree of variation and thus avoiding visible repe-
titions.

We qualitatively evaluate the effectiveness of our approach
across a diverse range of input patterns, demonstrating signifi-
cant improvements over previous state-of-the-art texture synthesis
methods. To assess user-perceived quality, we also conduct a user
study that captures preferences and perceived fidelity in the syn-
thesized output. In addition, we analyze our architecture through a
comprehensive set of experiments and ablation studies, highlight-
ing the benefits of our design choices. The results show that our
method consistently generates a wide variety of structure patterns,
correctly preserving the structure and visual coherence of the input
sketches. In summary, the contributions of our work are as follows:

e we present a new diffusion-based approach for structured pattern
synthesis and expansion;

e we introduce a new medium-scale dataset for fine-tuning gener-
ative models on the pattern domain;

e we demonstrate the generation capabilities of our model for dif-
ferent types of structured patterns and show its ability to control
the generation precisely from input sketches;

e we validate the improvements over other generative methods,
non-specifically trained for patterns, underlying the need for a
specifically trained model.

2. Related Work
2.1. Texture Synthesis.

Texture synthesis is important in computer graphics, vision, and
image processing. Pixel-based methods generate textures pixel by
pixel, either by expanding a seed image [EL99] or modifying noise
[WLOO] to match a reference. However, they often suffer from
artifacts or repetition when generation drifts into the wrong part
of the texture space. Patch-based methods synthesize textures us-
ing patches from the sample image. [LLX*01] enabled real-time
performance through efficient patch sampling, while [EFO1] im-
proved quality with Image Quilting, blending overlaps to reduce
seams. [KSE*03] further optimized boundaries with graph cuts, en-
hancing global coherence. Extensions include tiling methods such
as automatic seamless pattern generation [KS00] and Wang Tiles
for non-repetitive textures [CSHDO3]. Quality and efficiency have
also been improved through refined feature matching [WZ01] and
multi-resolution block sampling [YLCO02], which captures both
coarse and fine details.

© 2025 The Author(s).
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Figure 3: Starting from a hand-drawn input, we extend it to an arbitrarily large canvas, introducing variations while preserving structure
and appearance. The pattern is centered and expanded outward in an “outpainting”-like process. Our method combines text and image
conditioning to guide a fine-tuned Latent Diffusion Model [RBL*22] in generating consistent, high-quality patterns. Tileability is ensured
by rolling the input tensor at each diffusion step and unrolling afterward. To expand beyond the initial canvas, we replicate the latent tensor

after 60% of the diffusion process.

Relevant to our domain is the generation of near-regular tex-
tures, which combine strong regularity with stochastic variation
in color and geometry. [LHW*04] compared synthesis algorithms,
and [LHW*06] quantitatively evaluated quality. [LLHO04] intro-
duced deformation fields for geometry, lighting, and color on a
coarse structure, enabling flexible manipulation, while [RHE11]
guided random sampling with automatically extracted tiles to pro-
duce coherent patterns and handle irregularities.

2.2. Generative models.

Image generation is a long-standing challenge in computer vi-
sion due to the complexity of visual data and the diversity of
real-world scenes. With the advent of deep learning, the genera-
tion task has been increasingly posed as a learning problem, with
Generative Adversarial Networks (GAN) [GPM*14] enabling the
generation of high-quality images [KALL18; BDS19; KLA*20].
However, GANs are characterized by an unstable adversarial train-
ing [ACB17; GAA*17; Mes18], and struggle to model complex
data distributions [MPPS17], exhibiting a mode collapse behavior
and leading to a limited output diversity.

Diffusion Models (DMs) [SWMG15; HIA20; RBL*22] have re-
cently emerged as an alternative to GANS, achieving state-of-the-
art results in image generation tasks [DN21] also due to their sta-
ble supervised training approach. Furthermore, DMs have enabled
a whole new level of classifier-free conditioning [HS22] through
cross-attention between latent image representations and condition-
ing data. More recently, ControlNet [ZRA23] has been proposed
to extend generation controllability beyond the typical global-
conditioning (e.g.: text prompts) for a fine control over the gener-
ation structure. Moreover, approaches like DreamBooth [RLJ#23]
and LoRA [HSW*22] allow users to adapt large-scale pre-trained
models, to particular tasks or domains, without requiring to fine-
tune them and only needing a limited set of training samples.

© 2025 The Author(s).
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2.3. Generative models for textures synthesis.

Several works have assessed the synthesis of patterns in the form of
natural textures or BRDF materials, with few explicitly focusing on
structured patterns. [HVCB21] address the problem of texture syn-
thesis via optimization by introducing a textural loss based on the
statistics extracted from the feature activations of a convolutional
neural network optimized for object recognition (e.g. VGG-19).
[VMR*24] recently introduced ControlMat to perform SVBRDF
estimation from input images, and generation when conditioning
via text or image prompts. It employs a novel noise rolling tech-
nique in combination with patched diffusion to achieve tileable
high-resolution generation. MatFuse [VSPS24], on the other hand,
focuses on extending generation control via multimodal condition-
ing and editing of existing materials via volumetric inpainting, to
independently edit different material properties. Although Materi-
alPalette [LPdC24] focus on extracting PBR materials from a sin-
gle real-world image, they incorporate a texture extraction module
in their proposed pipeline. By fine-tuning a text-to-image diffusion
model for each set of material samples, they are able to generate
tileable textures at arbitrary resolutions.

Focusing on non-stationary textures, [ZZB*18] proposes an
example-based synthesis GAN that is trained to double the spatial
extent of crops extracted from an arbitrary texture, using a combi-
nation of Style and L; losses. After the GAN is trained, its gen-
erator can recursively be applied to expand texture samples while
coherently maintaining its non-stationary features. [ZCXH23] in-
troduces a new Guided Correspondence Distance metric that can
be used as a loss function to optimize the texture synthesis process,
improving the similarity measurement of output textures to exam-
ples. [ZXL*24], in contrast, leverages a diffusion model backbone
combined with a two-step approach and a "self-rectification” tech-
nique to generate seamless textures, faithfully preserving the dis-
tinct visual characteristics of a reference example.

Our method synthesizes a large texture from a small seed pro-
vided as a hand-drawn input sketch, offering versatility without re-
quiring further tuning to expand the pattern while preserving the
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structure and design properties of the input. In particular, it differs
from ControlNet-based methods, which require an additional net-
work and therefore increase computational overhead without sig-
nificant improvements in performance, in our setting.

3. Method

Our work is based on the Latent Diffusion Model (LDM) archi-
tecture [RBL*22], adapted to synthesize high-quality, stationary,
structured patterns with a sketched, vector-like appearance. Given
a hand-drawn input sample as a seed, we expand it to an arbitrarily
sized canvas, introducing subtle variations while preserving over-
all structure and visual consistency. In particular, we leverage the
inpainting capabilities of diffusion models via latent masking, by
centrally placing the input pattern on a larger canvas and generat-
ing the outer border. Our model extends the design outward in an
“outpainting” process, thus appropriately filling the entire frame.

To achieve this, we fine-tune a pre-trained LDM for image gen-
eration by training a Low-Rank Adaptation (LoRA) on a dataset
of procedurally generated patterns. To further enhance fidelity, we
integrate an [P-Adapter [YZL*23] for image-based conditioning.
This ensures that the extended design remains visually consistent
with the original input, which is loosely replicated to serve as a
guidance image. We additionally use text prompts to constrain the
generation to the structural regularity and solid-color look charac-
teristic of our target domain. To enable seamless extension of pat-
terns to arbitrarily large sizes, we adopt a latent replication strategy,
which introduces controlled variations while preserving structural
integrity. We also apply the noise rolling technique [VMR*24], to
achieve tileable pattern generation. Specifically, latent replication
occurs after N iterations, while noise rolling and unrolling are ap-
plied before and after each diffusion step, respectively.

An overview of our model architecture is shown in Fig. 3. In
the following, we first provide an overview of the latent diffusion
architecture for image generation and the approaches to combine
text and image conditioning, to then detail our approach and archi-
tectural choices specific to the structured pattern domain. We then
ablate our design choices and architectural components in Sec. 4.6,
demonstrating the benefits of our approach.

3.1. Guided Image Generation

We leverage the Latent Diffusion architecture, consisting of
a Variational Autoencoder (VAE) [KW14] and a diffusion U-
Net [RBL*22]. The encoder £, compresses an image x € R <W >3
into a latent representation z = £(x), where z € R"™"*¢, and c is
the dimensionality of the encoded image, capturing the essential
features in a lower-dimensional space. The decoder D, reconstructs
the image from this latent space, adequately projecting it back to
the pixel space.

The diffusion process involves a series of transformations that
gradually denoise a latent vector, guided by a time-conditional U-
Net. During training, noised latent vectors are generated, following
the strategy defined in [HJA20], through a deterministic forward
diffusion process ¢ (z/|z;—1 ), transforming the encoding of an input
image into an isotropic Gaussian distribution. The diffusion net-
work g is then trained to perform the backward diffusion process

Input Generation Input
S
Purple [ e
= P S Cartoon
& zebra brick
stripes wall
[
&
£
g
= ~
BN
(=%
s N

Figure 4: Generation modes supported by our base architecture.
While text or image global conditioning is possible (first two rows),
it often yields inconsistent patterns and limited fine-grained con-
trol. In contrast, our expansion approach (last row) produces arbi-
trarily large patterns while preserving input coherence.

q(zi—1|z), efficiently learning to denoise the latent vector and re-
construct its original content.

3.1.1. Text conditioning

Latent Diffusion models can typically be globally conditioned with
high-level text prompts via cross-attention [VSP*17] between each
convolutional block of the denoising U-Net and the embedding of
the condition y, extracted by an encoder 1tg, with the attention de-
fined as:

Attention(Q, K, V) = softmax <Q—KT) V. (1)

) ) \/g )

where O =W -@i(z1), K = Wi -t9(y), V = Wy 16 (). Here, 9i(z/) €

i
RV¥4e is the flattened output of the previous convolution block of

ep, and W) € RY*% Wi, € R4 Wi, € R4  are learnable pro-
jection matrices.

The training objective in the conditional setting becomes
2
Luow = Eg ) yenons e — ot x0DIB] . @)

We use the CLIP [RKH*21] ViT encoder from Stable Diffusion
v1.5 as our text encoder T, with a patch size of 14 x 14.

Despite the expressive capabilities of text, which has shown re-
markable results in the context of natural image synthesis, accu-
rately describing a pattern structure with text is challenging since it
would require precise definitions of the pattern shapes, their posi-
tions, and symmetries in relation to the other, and their appearance
features. For this reason, we mostly use image conditioning as de-
scribed below. At the same time, we use text prompting to reinforce
general pattern features, such as regularity and symmetry, rather
than targeting a specific example. To achieve this, we designed a
general purpose prompt, aimed at infusing the generation process

© 2025 The Author(s).
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Figure 5: The figure demonstrates our model’s versatility in expanding different pattern types, with inputs enclosed in black boxes. The
left and right samples display organic designs, highlighting seamless extrapolation of intricate details while maintaining a natural flow. The
central panel features a geometric pattern successfully extended to a larger area.

with these common characteristics. As illustrated in Fig.3, we em-
ploy the prompt "Regular hand-drawn repeating pattern with flat
colors" for all our results and evaluate its effectiveness against a
tailored pattern prompt in Sec.4.6.

3.1.2. Image conditioning

To provide better control of the synthesized pattern, we propose
to combine the general purpose prompt, commonly valid for all
our patterns, with image conditioning via an IP-Adapter [YZL*23]
model. This lightweight adapter achieves image prompting capa-
bility, for pre-trained text-to-image diffusion models, through a de-
coupled cross-attention mechanism that separates cross-attention
layers for text features and image features. In particular, the adapter
computes separate attention for the text and image embeddings,
which are then summed before being fed to the next U-Net layer.
The output of the new cross-attention is computed as:

oK/
Atten.(Q,K;,V;, K;, Vi) = softmax Vi +
vd
T 3

OK; )
+ softmax| ==X | V;
( vd )

with K, Vi, K;, V; being respectively the keys and values for the text
and image embeddings. During the training of the IP-Adapter, only
the image cross-attention layers are trained, while the rest of the
diffusion model is kept frozen.

This approach has shown remarkable performances in control-
ling the generation process with image prompts, allowing it to
closely follow the reference image. In our experiments, we con-
structed the guidance image by replicating the original sketch
across the entire canvas, resulting in a repetitive pattern that is reg-
ular but neither tileable nor fully consistent.

However, global conditioning through text or image prompts
alone lacks the level of detail necessary to capture and reproduce
the characteristics of our class of patterns, as shown in Fig. 4. We
address these limitations by employing the expansion strategy de-
scribed in Sec. 3.3.

© 2025 The Author(s).
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3.2. Stable Diffusion Finetuning

We fine-tune the Stable Diffusion 1.5 model [RBL*22] to our spe-
cific pattern domain to achieve consistent and visually coherent
pattern synthesis and expansion. In particular, we leverage a Low-
Rank Adaptation (LoRA) technique [HSW*22] for efficient fine-
tuning of large, pre-trained models, limiting the number of train-
ing parameters, while also avoiding catastrophic forgetting, which
is the tendency of a model to lose previously learned knowledge
when fine-tuned on new data.

In particular, we train a low-rank matrix and add it to the trans-
former layers of the base Latent Diffusion Model (LDM):

o' =0+A0, )

where 0 represents the original weights of the transformer in the
LDM, and A8 is the low-rank update, computed as:

A0=U-VT, 5)

with U € R™¢ being the trainable matrices, and r much smaller
than d, the dimensionality of the layer’s parameters.

This fine-tuning step focuses the generation on the pattern do-
main and is mostly responsible for the model’s ability to maintain
stylistic consistency and detailed coherence specific to the target
patterns. By introducing these low-rank updates, we ensure that the
model adapts efficiently to the specific feature of the pattern do-
main, without losing its expressive capabilities from the training
on the image domain.

3.3. Pattern expansion

To ensure aesthetic coherence and seamless tileability during pat-
tern expansion to arbitrary sizes, we use the Stable Diffusion
1.5 model trained for image inpainting [RBL*22]. Exploiting its
ability to interpret partial images and generate coherent comple-
tions, we combine inpainting with latent replication and noise
rolling [VMR*24] to produce tileable high-quality expansions.
This ensures that the extended patterns retain consistency with the
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Figure 6: Our custom pattern dataset includes samples from eight
classes. For each pattern, we use the generating procedural param-
eters to craft captions that accurately describe its design details,
creating pattern-text pairs while training the LoRA.

original input, preserving the overall visual appearance, as demon-
strated in Fig. 4 and Fig. 5.

In particular, we start the denoising process at the model’s native
resolution of 512 x 512, placing the input at the center of the can-
vas and leveraging the inpainting capabilities of Stable Diffusion to
fill the masked area. However, although inpainting can reconstruct
missing parts, it tends to lose long-term dependencies inside the im-
age, leading to inconsistencies in the global structure. This limita-
tion arises from the local receptive field of the model, which makes
it challenging to maintain consistency in regions farther from the
fixed input pattern. As a result, border artifacts can appear, disrupt-
ing the overall structure on the expanded canvas. To address this,
we incorporate noise rolling, which cyclically shifts the latent rep-
resentation z; at each diffusion step. This technique adequately re-
focuses the model’s receptive field, allowing it to capture a broader
spatial context and better preserve structural coherence throughout
the pattern. In particular, for each diffusion step, we compute:

2, = roll(z, Ax, Ay), (6)

where roll(-,Ax,Ay) denotes the cyclic shift operation along the
image’s width (Ax) and height (Ay). After rolling, the model esti-
mates the noise component and performs a denoising step, com-
puting zf,l. Subsequently, the latent space is unrolled back to its
original configuration to maintain the integrity of the global pattern
structure:

z—1 =roll(z/_1, —Ax,—Ay). 0

By manipulating the latent space in this manner, the model suit-
ably treats the pattern’s edges as interconnected, thus intrinsically
minimizing the presence of visible seams.

To tailor the expansion process to arbitrarily large canvases, we
replicate the latent tensor to fit the target size. As illustrated by the
dashed path in Fig. 3, We carry out this phase after N iterations and
continue with patched diffusion for the remaining denoising steps.
In our experiments, we set N to 60% of the inference steps, result-
ing in the best compromise between pattern consistency and vari-
ation. By combining latent replication and noise rolling, we sup-
port a larger expansion while guaranteeing the quality of the gen-

erated patterns, as demonstrated in Sec. 4 and in the ablation study
in Sec. 4.6.

4. Experimental results
4.1. Datasets

Due to the lack of publicly available pattern datasets, we created
a custom dataset consisting of 4000 patterns of 8 classes, namely
grids, checkers, stripes, zigzag, dots, bricks, metal and hexagons,
each of which is showcased in Fig. 6. Such classes were specif-
ically designed to expose strong geometrical structures and shape
arrangements, to help the LoRA learn the key features of structured
pattern domains. For each class, we defined an ad-hoc procedural
program capable of generating a diverse set of samples in both de-
sign and colors. To simulate a sketched style, we combined our
patterns with varying scales of Perlin noise [Per85], introducing
the irregularities commonly found in hand-drawn designs.

Our dataset consists of procedurally generated pattern-text cap-
tion pairs. We generate each pattern by randomly sampling a value
in the proper range for each procedural parameter, including col-
ors. We use these values to build the descriptive caption that high-
lights the main feature of the pattern. We use a caption template
for each pattern class, that is filled with details drawn from the
procedural parameter values. As an example, the caption match-
ing the checkered pattern in Fig. 6 (top left) is generated from
the base caption of “A hand-drawn checkered pattern. Checkers
are colored in <even_color> and <odd_color>, and their
size is <checker._size>. Checkers are surrounded on all four
sides by a checker of a different color. Colors are flat and without
shading.”, where the free variables are completed by “light green”,
“wheat” and “big” respectively. For each class, we sample 500 dif-
ferent parameter sets and generate the corresponding pattern-text
pairs for training For inference, we manually sketched 35 small
pattern samples on a graphics tablet, whose expansion is shown in
Fig. 1, Fig. 5, Fig. 11 as well as in all the experiments reported in
this paper.

4.2. Technical details

We train our LoRA with a mini-batch gradient descent, using
the Adam [KB14] optimizer with a learning rate set to 10~*
and a batch size of 8. The training is carried out for 5000 itera-
tions on a single NVIDIA RTX3090 GPU with 24GB of VRAM,
using the pre-trained inpainting Stable Diffusion 1.5 checkpoint
from [RBL*22].

At inference time, generation is performed by denoising a la-
tent random noise for 50 steps, using the DDIM sampler [SME21]
with a fixed seed. Expanding an input sketch takes about 2 seconds
at 512 x 512 and 4 seconds at 1024 x 1024 and 6GB of VRAM,
about 12 seconds at 2048 x 2048 and 8GB VRAM. Memory re-
quirements can be further reduced by processing fewer patches in
parallel, albeit at the cost of increased computation time.

4.3. Results and comparisons

We evaluate our model generation capabilities when conditioning
using either text or image. Despite not being the main focus of this

© 2025 The Author(s).
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Figure 7: We evaluate performance improvements from each design choice. The base inpainting model often loses visual coherence during
pattern expansion, but adding IP-Adapter conditioning helps align outputs with the prompt. LoRA fine-tuning further strengthens coherence
and quality across generations, while noise rolling ensures tileable results by removing seams and artifacts.

work, we show that our architecture is able to generate pattern-like
images when being globally conditioned. However, as shown in
Fig. 4, the generation style tends to diverge significantly from the
guidance image, highlighting the need for stronger constraints for
a specific pattern expansion that closely follows the input sample.

4.3.1. Expansion results

We evaluate our model generation capabilities for pattern expan-
sion (Fig. 1, Fig. 5, Fig. 11 and Supplementary Materials). The re-
sults demonstrate that our method closely follows the input prompt,
highlighting the pattern expansion capabilities of our model both in
terms of quality and coherence of the expanded result.

All the result figures, present the original input pattern contained
within a black box, while the surrounding part of the canvas is
filled during inference time. Our pipeline successfully extends the
input pattern, maintaining coherence and preserving the structural
integrity of the original design. Each generated pattern flows natu-
rally from the input, ensuring that there are no abrupt transitions or
noticeable repetitions. The model keeps the colors consistent in the
generated area, matching the original input. Due to the adoption of
the noise rolling technique, all results are tileable, allowing seam-
less repetition. All the provided examples use an expansion factor
of 2 for both width and height dimensions.

4.3.2. Comparison

We compare our approach against several state-of-the-art meth-
ods: [ZZB*18], [HVCB21], GCD [ZCXH23], MatFuse [VSPS24],
[ZX1*24] and MaterialPalette [LPdC24]. For each method, we use
the official code and weights released by the authors and adapt
our input to match the ones required by each method. As Mat-
Fuse [VSPS24] is trained to generate PBR materials, we provide
the pattern as the diffuse component of the material, initializing the
other properties to the default values. Simirarly, we only exploit
the tileable texture extraction module of MaterialPalette [LPdC24],
leaving the SVBRDF estimation module aside.

© 2025 The Author(s).
Proceedings published by Eurographics - The European Association for Computer Graphics.

As shown in Fig. 8, our method significantly improves on pre-
vious approaches in preserving the structural integrity and visual
fidelity of patterns. While methods like [HVCB21] and GCD cap-
ture the visual features of the patterns, they tend to break the overall
structure, introducing unnatural distortions resulting quality degra-
dation. MatFuse fails to capture the appearance of the pattern,
mostly due to the training on natural textures, being only able to re-
produce the colors and general shape of the pattern but lacking any
fine details. [ZXL*24], in contrast, is generally able to reproduce
the sharp visual appearance of the pattern, and capture the main
features; however, due to its main focus on non-stationary textures,
it tends to break the overall structure, resulting in sharp discontinu-
ity edges inside the image and transitioning between different parts
of the pattern. Additionally, it struggles with very sparse patterns
(e.g., third column in Fig. 8), and introduces a color shift on the
original input. Despite being the only method capable of produc-
ing tileable results, MaterialPalette [LPdC24] still faces significant
challenges in preserving the integrity of patterns, both in terms of
geometrical features and scale. Compared to the other approaches,
our work is able to capture the visual features of the pattern and ex-
tend it seamlessly, introducing slight variations without altering the
overall structure. Moreover, all of our expansion results are tileable,
thanks to the use of noise rolling at inference time.

For the sake of completeness, we also compared our method to
[2ZB*18], which aims to double the spatial size of a texture by
leveraging a GAN specifically trained to reconstruct a 2k x 2k tex-
ture from a k X k patch. We trained a GAN model for each of the
input patterns, which required approximately 1.5 hours each. As
shown, [ZZB*18] is able to reproduce the overall pattern structure
while spatially extending the input sketch, but it also introduces
several artifacts and discontinuities that degrade the overall qual-
ity output. Moreover, tileability is not imposed, resulting in longer
training times to scale to higher-resolution images. In contrast, our
approach achieves superior results in both structure preservation
and image quality, without requiring ad-hoc training for each tex-
ture, while preserving the input sketch and naturally producing
tileable outputs.
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Figure 8: We compared our method with established texture and material synthesis techniques. As previous work tends to break the overall
structure (a, b, c, e, f) or fails at reconstructing the pattern appearance (d), our method consistently expands the input by preserving structural

integrity and input coherency.

It is important to highlight that our pipeline completes the dif-
fusion step in around 2 seconds, whereas the execution times for
[HVCB21], GCD [ZCXH23], and [ZXL*24] and [ZZB*18] from
at least 2 minutes up to 1.5 hours for each example, where training
is involved. MatFuse [VSPS24] has similar timings to our method,
due to the similar diffusion backbone, but shows significantly worse
generation quality.

4.4. User Study

To evaluate our method’s performance, we conducted a com-
parative study involving prior methods, namely [HVCB21],

GCD [ZCXH23], MatFuse [VSPS24], and [ZXL*24], excluding
those with excessive training times or evident scale issues. The user
study involved 80 MS/PhD students in computer science who were
tasked with selecting their preferred expanded pattern based on the
quality and consistency of the generation. We showed each one of
them 20 randomly chosen pattern generations—including both the
input crop and the output for each method compared, in a ran-
dom sequence—from a set of 35 expanded patterns. Our approach
received a higher number of votes (Ours=1471 (i.e.: 91.93%),
[HVCB21]=0, GCD=7 (i.e.: 0.44%), MatFuse=0, [ZXL*24]=122
(i.e.: 7.63%)), showing a significant general preference of the ex-

© 2025 The Author(s).
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(c) Ad-hoc

(a) No prompt

Figure 9: Rather than tailoring a text prompt to each pattern
sample (c), our general-purpose prompt (b) improves generation
quality by introducing structural and coherent features that image
prompting alone (a) often fails to capture.

pansions generated from our approach compared to the other meth-
ods. These results further support our claims.

4.5. Quantitative Evaluation

We quantitatively evaluate our method by computing the TexTile
metric score [RCGL24] for 35 expanded patterns. TexTile provides
a differentiable metric that quantifies how likely a texture can be
concatenated with itself without introducing artifacts. In our ex-
periments, we achieve a TexTile score of 63.93% =+ 8.24%, which
aligns with the score obtained on tileable textures from the dataset
(62.25% =+ 14.04%). However, vertical and horizontal concatena-
tion of expanded patterns yields perfect tileability due to the noise
rolling technique. Still, we recommend larger-scale expansion over
replicating smaller ones to reduce detail repetition (see Fig. 11).

4.6. Ablation Study

We evaluate our design choices starting from the baseline solution
and gradually introducing the different proposed architectural com-
ponents and diffusion elements—IP-Adapter, LoRA finetuning, and
noise rolling—. To systematically assess the impact of each compo-
nent, we test the different configurations on a series of example pat-
terns. We provide qualitative results of the ablation study in Fig. 7.

We first evaluate the Stable Diffusion base model performing a
text-guided inpainting task (Fig. 7a). This sets a performance base-
line without being influenced by any of the design choices pre-
sented in the paper. Although the model is able to fill in the miss-
ing areas, it tends to diverge from the input condition and break
the overall structure. Even for simple examples, the text-guided ap-
proach is not a natural mean to express pattern structures such as
shapes and arrangements, and moreover, it is not versatile enough
to perfectly describe the design of the partial input pattern.

To provide control in a more natural way, we include an IP-
Adapter [YZL*23] that introduces an image prompt as further

© 2025 The Author(s).
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Figure 10: Our model has both domain-specific and architectural
limitations. It cannot expand non-repeating patterns, whether non-
stationary or aperiodic [SMKG23] (left, center), and may also
distort structured patterns when enforcing consistent scale and
tileability (right).

guidance for the inpainting process. The guidance image is con-
structed by simply repeating the image prompt multiple times to
fill a 512 x 512 canvas. As described in Sec. 4.2 this helps the
CLIP encoder better capture the visual features and sharpness of
the guidance, due to the high sensitivity of CLIP to image resolu-
tion [WCL23]. As shown in our results in Fig. 7b, visual guidance
allows the model to better follow the input, while still presenting
some visual inconsistencies and limitations, mostly due to the train-
ing on natural images. In fact, the model is capable of better catch-
ing the style and colors provided by the guidance image, but it still
fails at reconstructing its geometrical details in both shape features
or pattern scale and often provides natural-looking results.

Since the model is more exposed to photorealistic, natural, and
unstructured data during training, we perform a fine-tuning of the
structured patterns to better adapt it to this new domain and task.
To do so, we trained a LoORA module on our crafted pattern dataset.
By combining the LoRA domain knowledge with the Stable Diffu-
sion Model backbone, we noticed that the overall result quality and
consistency are significantly improved, thanks to the new adapta-
tion to the pattern domain. In particular, results preserve the same
style as the provided input and reconstruct geometrical details and
arrangements in a more resilient way (Fig. 7c).

Despite good results could be achieved on small expansions, we
notice a deterioration of the output for higher expansion factors.
As reported in Fig.7d, the expansion tends to produce a degraded
output that influences the style and the structure, in terms of color
artifacts and discontinuities in the pattern respectively. The intro-
duction of the noise rolling technique enables us to produce results
that correctly integrate the provided image by maintaining both the
visual and geometrical aspects Fig.7e. In particular, this addition
has a twofold effect: it makes the generated pattern tileable by re-
moving edge discontinuities, as already assessed in [VMR*24], and
it helps in better capturing long-range dependencies inside the im-
age, thus allowing us to increase the expansion factor without los-
ing quality.

In Fig. 9 we assess the design choice of having a general purpose
text prompt as a support to the guidance image prompt. Our fixed
text prompt drives the diffusion to maintain properties like high
regularity in terms of both structure and colors, which are common
features in the pattern domain we focus on. In our experiments, we
fixed the text prompt to be "Regular hand-drawn repeating pattern
with flat colors.". The absence of a text prompt (Fig. 9a) tends to
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Figure 11: Our diffusion-based pattern expansion method enables the generation of large-scale, high-quality, and tileable patterns from a
small user-drawn input, reported in the black boxes. By being fine-tuned on domain-specific data, it adapts to different structured arrange-
ments of solid-colored shapes, consistently extending the input design features to a larger-scale result. More results in Supplementary.

include color variations and shape misalignments during the diffu-
sion steps, deteriorating the overall coherency with the input pattern
sample. In contrast, using a text prompt that is tailored to the actual
input sample (Fig. 9c) does not significantly improve the genera-
tion quality while requiring an additional, non trivial, effort by the
user. The ad-hoc text prompt used in the middle example is "The
pattern features two geometric motifs repeated horizontally: bright
green stripes bordered by dark green with small aligned dots in-
side, alternating with an orange fishbone pattern on a white back-
ground. The hand-drawn style gives the design a slightly irregular
appearance.”. This furtherly highlights how prompt complexity in-
creases when attempting to describe geometric features textually.
The use of the proposed general purpose text prompt represents a
good tradeoff between expansion quality and pipeline generaliz-
ability (Fig. 9b).

5. Limitations and Future Work

Our method limitations can divide between architectural limitations
and domain ones. Examples of failure cases or unexpected behavior
are presented in Fig. 10. As discussed in the paper, our method can-
not faithfully expand non-repeating patterns, either non-stationary
(Fig. 10 left) or aperiodic. [SMKG23] (Fig. 10 center). This lim-
itation comes from the design choices of our approach, which fo-
cus on repeating patterns. While both expansions present plausi-

ble patterns, they don’t necessarily follow the expected behavior,
where the lines in the first figure should keep growing while the
tiles should not present a predictable pattern. Future work could
focus on tackling non-repeating patterns by injecting, into the gen-
eration, additional information in the form of conditioning about
the patterns’ repetitiveness. The last failure case (Fig. 10 right), on
the other hand, shows a design limitation of our approach, which
can fail to generate very structured patterns at a consistent scale in
the presence of tileability. This is related to the noise rolling, which
enforces tileability on the border of the image, thus squeezing the
border shingles to make them fit the canvas. Possible improvements
could involve an automated solution to find the optimal crop of the
pattern [RCGL24] before beginning the expansion.

6. Conclusion

In this paper, we present a diffusion-based architecture for struc-
tured pattern expansion, with a focus on the controllability of the
generated pattern. We demonstrated the expansion of several hand-
drawn patterns samples with distinctly different structures, sym-
metries, and appearance. Our results show the robustness of the
proposed architecture and its controllability, while the comparison
with prior work shows that our method is significant with respect
to the state of the art.

© 2025 The Author(s).
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