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Figure 1: pOp finds the parameters of procedural vector graphics patterns that best match target images. We support patterns comprised of
standard vector graphics elements, e.g. circles, rectangles, lines, and quadratic Bezier curves, where the translation, rotation and scale of the
elements is defined by an arbitrary procedural program. Here we show several examples from different generators. We tested our algorithm
with synthetic input generated from a pattern instance, that lets us measure the goodness of fit, here reported as mean squared error (MSE)
of the procedural parameters. We also include examples fitted from hand-drawn input, mimicking a possible design application.
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Abstract

Procedural materials are extensively used in computer graphics, since they provide editable, resolution-independent represen-
tation of textures. However, tuning the parameters of procedural generators to achieve a desired result remains time-consuming
for users. Recently, inverse procedural material algorithms have been developed, exploiting differentiable rendering methods
to find the parameters of a procedural model that match a target image. These approaches focus on raster textures. We propose
pOp, a practical method for estimating the parameters of vector patterns, that are formed by collections of vector shapes
arranged by an arbitrary procedural program. In our approach, patterns are defined as arbitrary programs, that control the
translation, rotation and scale or vector graphics elements. We support elements typical of vector graphics, namely points,
lines, circle, rounded rectangles, and quadratic Beézier drawings, in multiple colors. We optimize the program parameters by
automatically differentiating the signed distance field of the drawing, which we found to be significantly more reliable than
using differentiable rendering of the final image. We demonstrate our method on a variety of cases, representing the variations
found in structured vector patterns.

CCS Concepts
» Computing methodologies — Texturing;

1. Introduction tures are time consuming to create otherwise. A procedural gener-

ator can be thought of as a function that produces a texture guided
Procedural content creation is heavily used in computer graphics by a set of parameters chosen by artists while modeling. Many such
since it produces high-quality, resolution-independent assets that procedural generators are easily available and cover a large class of
can be easily edited to produce countless variations. Procedural textures, e.g. [ADO]. But as the number of parameters increases,

synthesis is particularly well suited to texture generation, since tex-
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determining the parameter values needed to obtain the desired look
becomes time-consuming.

To alleviate this issue, inverse procedural modeling techniques
attempt to find the parameter set of a given procedural genera-
tor that matches a target image. In particular, recent works like
[HDR19,GHYZ20,SLH*20,HHD*22], use optimization of differ-
entiable textures, optionally combined with neural networks and
texture synthesis to provide a solution in this domain.

In this paper, we focus on procedural vector patterns, formed
by a collection of vector shapes. In our application, the procedural
generator is an arbitrary function that places shapes according to
the desired pattern, by changing their translation, scale and rotation.
Our goal is similar to prior work, in that we want to determine the
procedural parameters of a pattern that matches a target image. The
main difference with prior work is that we focus on vector patterns
treated as collections of shapes, rather than raster textures formed
by a grid of pixels.

We find procedural parameters with a gradient-based optimiza-
tion process, that requires that vector patterns are end-to-end dif-
ferentiable with respect to the pattern parameters. Prior work on in-
verse procedural texture synthesis uses differentiable rendering to
match the final image. For vector graphics, [LLGRK20] proposed
an inverse rendering framework suitable for various optimization
tasks. When applied to our domain though, inverse rendering is not
a suitable solution since the gradient is vanishingly small when the
pattern shapes do not overlap during optimization. We instead pro-
pose a loss function based on signed distance fields, that works well
in our domain. We show how to compute such loss for vector pat-
terns by combining the known shapes’ distance field with a proper
composition operator, and how to support arbitrary fill and stroke
colors. The operation required for the resulting patterns turn out
to be all differentiable, so we can easily support arbitrary patterns
written as Python functions, by taking advantage of automatic dif-
ferentiation frameworks. We determine the exact formulation of the
loss function by experimentation and optimize it using gradient-
based optimization, where proper initialization is determined ex-
perimentally.

We tested our algorithm with a variety of patterns, as shown in
Figure 1 and throughout the paper, using both synthetic and hand-
drawn input, and found the proposed method reliable, where prior
work was not able to find the pattern parameters. We believe that
our method may be particularly helpful for users when the number
of parameters increases and when patterns that are visually very
different can be obtained from the same procedural program, as
shown in Figure 2.

2. Related work

In this section we review relevant works from the Inverse Procedu-
ral Modeling literature, focusing on material design tasks.

Inverse Procedural Modeling. The term Inverse Procedural Mod-
eling (IPM) refers to the problem of finding the procedural descrip-
tion given a target model, which can be a texture, a 3D shape or any
model that can be procedurally generated. A complete overview of
this topic is not possible in this short paper, so we outline here only
some contributions in this area.
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Figure 2: The same procedural program can create visually-
distinctive patterns. Our algorithm optimizes all pattern variations.

[SBM*10], one of the first works in this area, proposes a method
for objects made up of lines or Bézier curves. They provide a frame-
work that automatically extracts an L-system, that is a description
of a model using compact rules, from a vector image of Bézier
curves. [VGDA™12] demonstrates procedural modeling for urban
design applications, by proposing a system that optimizes the in-
put parameters of local and global indicators in a 3D procedural
model of buildings and cities, based on Markov Chain Monte Carlo
(MCMC) during the parameter searching. [BWS10] investigates
the inverse procedural modeling of 3D geometry, building a sys-
tem that automatically creates 3D models that are similar to a tar-
get geometry, extrapolating a set of procedural rules that allows fast
and reliable object construction. Subsequently, the idea of inverse
procedural modeling was adopted in many fields such as the gener-
ation of trees from a target model [SPK* 14], knitwear [TMK*19],
facades or buildings [MZWGO07] [NBA18] or the reconstruction of
animated sequences [PLL11]. A detailed overview of the inverse
procedural modeling of 3D models for virtual applications is ex-
posed by [ADBW16]. While all these works are examples of in-
verse procedural modeling, they address modeling problems that
are quite different from ours.

Inverse Material Design. The works that model textured materials
are the ones that mostly relate to our own. In these works, example-
based non-parametric texture synthesis has been explored the most,
starting with per-pixel [EL99] and per-patch [EFO1] stochastic
approaches, followed by optimization methods [KEBKOS5], and
many other techniques reported in the comprehensive survey of
[WLKTO09]. [GEB15] proposed a method that aims to create a
texture by extracting and combining features at different levels,
using this stationary representation to learn a new texture from
noise. Recently, the work of [ZZB*18] focuses on the synthesis
of non-stationary textures using Generative Adversarial Networks
(GANSs), producing a bigger texture that is perceptually similar to a
small target image using a generator and discriminator approach.
Lastly, [PTWY"20] proposed an example-based framework for
continuous curve patterns that extends previous discrete element
synthesis methods by involving not only the sample positions but
also their topological connections.

While non-parametric texture synthesis works well for many
domains, it lacks in “editability”, i.e. the ability of users to fine-
tune the final texture to match the desired look. Procedural mate-
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rial design focuses on that specifically, since the generated textures
can be controlled by manipulating the parameters of the genera-
tor. However, when the number of parameters is high, users may
struggle in finding the parameter values to obtain the desired ap-
pearance. This issue has started to be addressed recently for raster
textures. [GHYZ20] use Markov Chain Monte Carlo to sample the
parameter space to find the procedural parameters that generate the
desired texture for unstructured materials such as wood, plastic,
leather or metallic paints, starting from a photograph. [SLH*20]
presents a more comprehensive method that works on differen-
tiable procedural graphs, automatically converting the procedural
nodes in [ADO]. Given a target image, the most promising mate-
rial graphs are selected using their Gram Matrix computed with a
pre-trained VGG network [GEB16]. The material parameters are
then refined using gradient-based optimization of the differentiable
material graph. This approach works well for color manipulations
but does not support effectively pattern generator nodes, which is
the focus of our work.

[HDR19] combines inverse procedural textures and texture
synthesis in a comprehensive framework for inverse material de-
sign. The parameters of an inverse procedural program are esti-
mated via clustering and by using a Convolutional Neural Network
(CNN) trained for parameter estimation. To better match the de-
sired look, the result is augmented via non-parametric style trans-
fer. In [HHD*22], the authors improve upon their previous work by
presenting a semi-automatic pipeline for material proceduralization
given SVBRDFs maps. The framework hierarchically decomposes
them into sub-materials, that are proceduralized using a multilayer
noise model capable to capture local variations. They reconstruct
procedural material maps using a differentiable rendering-based
optimization that minimizes the distance between the generated
procedural model and the input material pixel-map.

Our work is mostly related to these techniques. We follow an
inverse procedural approach using optimization to determine ma-
terial parameters from input images that supports arbitrary differ-
entiable procedural programs. The main difference with prior work
is that we focus on vector graphics textures rather than raster ones.
Furthermore, many previously described techniques rely on train-
ing neural networks to estimate a parameter initialization. However,
collecting data and offline training are time-consuming processes,
that may also be iterated if new assets need to be supported. On the
contrary, we decided to rely on an online parameter initialization,
which is included in our pipeline.

[MB21] demonstrates interactive manipulation of parametric
procedural shapes by parameter optimization using differentiable
procedural graphs, obtained by augmentation of shape modeling
graph with differentiation features. The application of these ideas
to material modeling is an interesting avenue of future work.

Lastly, the work of [LLGRK20] proposes a differentiable raster-
izer for vector graphics that fills the gap between vector and raster
graphics. The authors demonstrate that their differentiable renderer
supports interactive editing, image vectorization, painterly render-
ing, seam carving and generative modeling in a gradient-based op-
timization process. We initially based our work on this approach,
but found that it does not work well for patterns made of many
shapes, as demonstrated in the next chapters.
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Figure 3: When trying to optimize a pattern starting from the same
initial configuration, we found that losses based on image differ-
ence, and relate differentiable renderers such as [LLGRK20], do
not work well in our problem domain. We instead define a loss
based on pattern SDFs that is robust to all pattern variations.

3. Differentiable Vector Patterns

Procedural Vector Patterns. We focus on patterns made of col-
lections of vector primitives instantiated on a canvas. In our im-
plementation, we support a subset of the SVG (Scalable Vector
Graphic) standard shapes such as circles, rectangles, line segments
and SVG paths consisting of quadratic Bézier curves. Every shape
is described by its geometric parameters, as well as its rendering
style comprised of fill color, stroke color, and stroke thickness. In
our work, we do not support semi-transparent shapes as well as
linear and radial color gradients.

Each pattern is represented as an arbitrary function that de-
scribes the position, rotation and scale of vector primitives, con-
trolled by a set of pattern parameters. For example, a grid pat-
tern is a function parametrized over the grid offsets. In this work,
we focus on structured and non-stochastic patterns, since many
works have already focused on stochastic procedural materials
[HDR19,GHYZ20,SLH*20,HHD*22]. In our implementation pat-
terns are written as arbitrary Python functions, which are signifi-
cantly more expressive than node graphs, and support completely
general shape arrangements.

Inverse Procedural Patterns. Given a target image and a proce-
dural function able to reproduce such image, we seek to estimate
the function parameters that reproduce the target image. In other
words, our goal is to identify the parameter set ©* of the given
procedural function G that minimizes a loss £ between the target
image I and the one generated by G.

" = argming L(I,G(®)) (1)

Prior work on inverse procedural materials uses differentiable
renderers combined with gradient-based optimization to estimate
the procedural parameters [GHYZ20, SLH*20, HDR 19, HHD*22].
In the context of vector graphics, [LLGRK20] present a differen-
tiable rasterizer for SVG elements that we attempted to apply in
our work. In this case, a loss is computed between a target image
and the rendered image obtained by rasterization. Since the raster-
izer is differentiable, gradient-based optimization is used to find the
parameter set that best fits the target image.

However, as shown in Figure 3, measuring the loss as an image
difference together with a differentiable rasterizer has significant
issues for vector patterns comprised of many small shapes. The
case shown in this previous image is particularly problematic since
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Figure 4: Comparison of the results obtained with different loss functions, reporting both the pattern image and the MSE of the optimized
pattern parameters, where all parameter sets are optimized from the same initialization. We compare Ly, Ly, Ly over a gaussian pyramid,
the metric proposed in [SFK*20], and the L, distance with normal alignment. The latter loss was chosen since it works best in our tests.

SDF for black

SDF for yellow SDF for pink

Figure 5: Colored patterns are supported by computing an SDF
for each color. The loss function is the sum of the contribution cor-
responding to each color. Here we display SDF's from blue to red
for negative to positive values respectively.

many shapes with constant colors overlap. In this case, gradients
derived from an image difference metric become small and inaccu-
rate. A similar problem occurs when small shapes do not overlap,
where the gradient becomes unreliable since it captures differences
only on shape boundaries. Overall these issues make the gradient
vanishingly small for most parameters’ configurations, making im-
age differences unstable in our context.

Loss Function. To overcome this issue, we measure pattern dif-
ferences based on the signed distance fields of the pattern’s shape
elements. This ensures that gradients are well defined for all pa-
rameters’ configurations. A signed distance field for a pattern is a
function that measures the minimum distance between a point and
the boundaries of the shapes. By convention, we assign a negative
distance if the point is inside a shape, and a positive distance other-
wise.

Since a pattern may have multiple colors, we consider the dis-
tance to the shape of each color separately, as shown in Figure 5.
Note that if a shape is drawn with a different stroke and fill colors,
its SDF is different for each color. For the stroke color we con-
sider the geometry of the shape boundary, while for the fill color
we consider the geometry of the shape interior. If we indicate with
Sc the signed distance corresponding to color ¢, the loss between
the target image / and the generated pattern G(®) is the sum of the
a per-color difference between their SDFs, which can be written as:

Ls= ZDSc(I :8¢(G(®)))

ceC

2

where C is the set of pattern colors.

We measure the difference D between SDFs with the L, dis-
tance, which was chosen by experimentation. In particular, we ex-
perimentally compared this metric with the L; metric and the L,
metric applied over the levels of a Gaussian image pyramid, and
found L, to work best for our problem. An example of this com-
parison is shown in Figure 4.

[SFK*20] introduces a loss between SDFs for the case of fitting
the control points of quadratic Bézier curves for a single shape.
Their metric is composed of a distance metric of the shape SDFs,
together with a normal alignment term that measures the alignment
of the shape normals. For our problem domain, the L, distance
worked significantly better. This is due to the fact that [SFK*20]
measures SDF differences only in the image regions near shape
boundary, which makes the gradient vanishingly small for most pa-
rameter sets in our case, as we have already discussed.

At the same time, we observe that combining the normal align-
ment metric with the L, metric improves optimization convergence
when shapes positions are close to the target image, making the
SDF loss vanishingly small, while the normal alignment remains
significant. In our notation, the normal alignment loss is written as:

P

ceC

Ly = (VS (1), VS(G(@)))* 3)

Il

where gradients are normalized. The final loss £ between a target
image and the procedural pattern is the weighted sum of both terms,
written as:

L=Lg+oy Ly “4)
where the weight ayy is set to 0.05 according to the results of a
hyperparameter tuning process.

Pattern Distance Fields. To evaluate the loss, we need to compute
the distance field of each pattern color. We can compute the dis-
tance field by considering each vector element separately, and then
combining those fields appropriately.

For basic vector graphics elements, the signed distance field
can be analytically computed. The formulas for circles, rectan-
gles and line segments can be found in [Qui], while the formulas
for quadratic Beézier curves are presented in [SFK*20]. In our im-
plementation, we approximately convert cubic Bézier to quadratic
ones, since the latter have simpler and numerically-robust distance
formulas.
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Figure 6: SDF corresponding to the operation of drawing a shape
onto another, compared to the SDFs for the single shapes.
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We combine the shapes SDFs into the pattern SDF using a
variety of operators supported in vector graphics. SDFs support
boolean operators, namely union, intersection and difference, in a
straightforward manner. We adopt these operations in our prototype
implementation. But, in the vast majority of times, vector graphics
elements are combined by drawing elements on top of the previ-
ous ones, which does not correspond to any boolean operations for
shapes with fill and stroke colors. For this case, we introduce a new
operator that computes the SDF of a shape drawn on top of another,
illustrated in Figure 6. The reason why the union operator cannot
be used to combine shapes drawn one after the other is that stroke
and fill colors do not properly combine, as shown in Figure 7.

Let us consider the operation of drawing a shape onto a back-
ground. Since we compute SDFs for each color, we focus on a sin-
gle color ¢, and consider three SDFs: the background SDF for ¢, in-
dicated as S, and the SDF:s for the stroke of fill of the foreground,
indicated as ¥ and S? . The resulting SDF for the selected color de-
pends on the fill and stroke colors of the foreground, giving us four
cases. (1) If the selected color is the same as both the stroke and
fill colors, then we want to include the whole foreground into the
SDF, which can be done using a boolean union. (2) Conversely, if
the selected matches neither the foreground stroke and fill, then we
want to remove the whole foreground from the background SDF,
which can be done using a boolean difterence. (3) If the selected
color matches the foreground stroke color, but not its background,
then we have to include the former and exclude the latter resulting
in a union followed by a difference. (4) Finally, if the selected color
matches the background fill, we perform a difference followed by
a union. Formally, we summary write:

union(Sf,union(Sf,S?)) forc=sAc=f

diff(S2  union(st , L)) forc#sANc# f

Top(B,F,c) = X s

OnTop(B, F') diff(union(SE, sF ),SE) forc=sAc f
union(diff(S, S5 ),8F)  forc#sAc=f

Figure 6 shows an example of combining two shapes with the
same stroke and fill colors, resulting in the last two cases described
here.

Differentiable Pattern SDFs. We estimate the procedural param-

eters using gradient-based optimization, which requires gradients
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Figure 7: Comparison between combining overlapping shapes
with boolean unions or with our operator that captures drawing
shapes on top of one another. While the union operator captures
shapes correctly, it cannot represent shapes that have both stoke
and fill color. Our operator matches exactly the SDFs correspond-
ing to the stroke and fill colors extracted from the target image.
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Figure 8: SDF extracted from an hand-drawn target image. For
each image color, we extract a binary mask that is used to compute
both inner and outer distance using the Euclidean distance trans-
form, flipping the mask values accordingly.

to be computed for all parameters. To this end, we employ the au-
tomatic differentiation facilities in PyTorch [PGM*19]. Our pat-
terns are written starting from single shapes that are either drawn
on top of one another or combined with boolean operations. All
these operations are just a sequence of calls between automatically
differentiable functions, making automatic differentiation feasible.
In all cases, automatic differentiation can compute derivatives via
backpropagation, without any further intervention from the pattern
author.

Target Image SDF. SDFs can be computed analytically when
shapes are provided explicitly. For our application, only target im-
ages are provided, so the target SDFs need to be computed from
the raster representation. The SDF extraction procedure is shown in
Figure 8. Since we compute an SDF per color, we first compute a
binary mask of the image that selects the areas that match the given
color. Once the mask is extracted, we apply the Euclidean distance
transform to extract the distance inside of the shape, and apply the
same procedure to the inverted mask to extract the positive distance.
In the end, we combine the two distance transformations to obtain
the complete target signed distance.
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4. Parameter Optimization

Optimization Procedure. As described before, the goal of our
work is to determine the procedural parameters so that the gen-
erated vector pattern matches a target image. Such parameters are
computed by minimizing the loss specified in Equation 1. We con-
sider as optimizable parameters only the ones that influence the
pattern geometric properties. Conversely, the shape element types
and their colors are given apriori and thus not considered in the
optimization process.

We determine the procedural parameters using an iterative
gradient-based optimization process that relies on the end-to-end
differentiability of our pattern SDFs. More specifically, we use the
Adam optimizer [DB15], with a learning rate of 0.025. We choose
Adam since it works well for our problem. The target SDFs are
computed as described above and do not need to be differentiable.

Parameter Set Initialization. At the beginning of the optimization,
a proper initialization is necessary to ensure that we do not get stuck
in local minima. We tested several initialization strategies and pick
the one that works best for our case. In particular, we considered
random sampling, Nelder-Mead’s simplex and Genetic Algorithms,
as illustrated in Figure 9.

Random sampling picks a set of initialization candidates ran-
domly in the whole parameter set and maintains the set of candi-
dates that most closely matches the target image. Even with rela-
tively few parameters, we found that this procedure achieves poor
results. One of the main issues is that an error introduced by even a
single parameter might reject a candidate, even if all other param-
eters were selected well. For this reason, we iteratively sample a
single parameter at each iteration, thus not losing some good pa-
rameters initialization discovered in the previous ones.

The Nelder-Mead’s simplex algorithm [NM65] solves the un-
constrained optimization of a function by evaluating it at a set of
points that form a high-dimensional simplex. Then, it iteratively
shrinks the simplex by replacing the point with the highest error
with another obtained using the reflection, expansion or contrac-
tion operations. This step is repeated a desired number of times.

Genetic Algorithms [For96] are a class of computational models
inspired by the idea of evolution. In our setting, the variant we use
first samples a set of candidates randomly in the whole domain.
Candidates are ranked based on their error, and the best ones are
picked to participate in the next generation. New candidates are
then generated by using a 2-point crossover operation, with further
random mutations. This step is repeated a desired number of times.

In our experiments, we found random sampling to perform
worst, with the simplex method and genetic algorithms to work
well. For example, in Figure 9 we compare the three initialization
both visually and by computing the Mean Squared Error (MSE) be-
tween the target parameters and the computed initializations. In this
example, and in general, the Genetic Algorithms achieves the best
results, due to their capacity of propagating partial best parameters
from an iteration to the following ones.

Parameter Set Optimization. To reduce the chance to get stuck in
local minima, we tested two commonly-used approaches. At first,
we adopted an Iterated Local Search [LMSO03] approach. This pro-

Target Nelder-Mead

Genetic Algorithms

!

MSE: 1.4249 MSE: 1.4091 MSE: 1.1208

Figure 9: Comparison between the parameter initialization proce-
dures. Between random sampling, Nelder-Mead’s simplex and ge-
netic algorithms, the latter was selected since it works best for our
problem.

0.018 4

0.016

0.014 4

0.012 4

Loss

0.010 A

0.008 4

0.006 A

0.004

0 50 100 150 200 250
Iteration

Figure 10: Loss changes during optimization of the stripe pattern
in Figure 1. In our approach, we chose to optimize starting from
multiple starting configuration, to reduce the chance of local min-
ima, and pick the best final one. We use 10 candidates in our, but
show here only 2 for clarity of presentation.

cedure consists in applying iteratively a local search algorithm, rep-
resented in our case by gradient descent. At the end of each itera-
tion, a single parameter of the best configuration found so far is
modified at random. The new configuration obtained this way is
then used to initialize the next local optimization pass. This helps
to avoid local minima by perturbing a solution that might not be
optimal. However, only the best configuration found by the initial-
ization phase is exploited to initialize the first local search. Alterna-
tively, the best candidates selected during initialization are all op-
timized separately with gradient descent, but without perturbation.
We then select the parameter set with the lowest loss. This tech-
nique reduces the chance of local minima by exploring more points
in the space. In our experiment, the latter procedure worked best,
especially in the case where the number of parameters increases.
We chose to use 10 initial candidates for the exploration.

Finally, during an iteration, the loss could keep increasing or os-
cillating around a minimum. To reduce such behavior we adopt
a patience and refinement technique. If the loss between the tar-
get pattern and the one computed by the generation increases for a
considerable amount of iterations, the best parameters assignment
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is reloaded and the optimizer learning rate is reduced. This strat-
egy helps in case of an oscillation around a minimum since the
adopted optimizer parameters could produce high jumps in the loss
landscape without gradually leaning towards a minimum. If the op-
timized parameters are refined with a high frequency, then the it-
eration is stopped and the best parameters are again reloaded and
perturbed before the next iteration starts. We adopted a patience
of 100 iterations and a total number of 3 refinements during each
framework iteration. At the end of the process, the overall best pa-
rameters identified during one of the iterations are returned. An
example of optimization is shown in Figure 10.

5. Results

Throughout the paper, we have already shown several patterns
whose parameters were fitted with our algorithm. In this section,
we analyze the generator functions that were used to obtain the
given patterns.

Pattern Optimization. All results in this paper were fit with the
same hyper-parameters to further demonstrate the robustness of the
approach. In particular, we use 250 gradient descent iterations from
the 10 best candidates selected during an initialization of 25 gener-
ations, starting from a population of 250 individuals. We execute all
operations on a 16-core Ryzen 9 CPU with an NVIDIA 3090 GPU.
All code was written in Python and use PyTorch [PGM*19] and
SciPy [VGO*20] for optimization and automatic differentiation.
The Genetic Algorithm based initialization is implemented using
the DEAP [FDG*12] framework.

Table 5 shows the statistics of the optimized patterns. We tested 7
different procedural patterns, that have from 4 to 14 parameters. In
our tests, we found that our algorithm can reliably find the param-
eter sets in all these cases. For the synthetic patterns, we measure
the goodness of fit with the MSE of the pattern parameters, which
we found to be very low in all cases, going from 0.0001 to 0.4375.

Patterns with tens of parameters are cumbersome for users since
all parameters need to be appropriately set. This is sometimes ame-
liorated by careful parametrization, which makes a single pattern
easier to use, but also makes writing new patterns complex. On the
contrary, in our work patterns are arbitrary Python functions that we
did not specifically write to provide convenient parametrization.

In Figure 11, we show a failure example involving a pattern that
is parametrized by 25 parameters. While the number of shapes and
colors does not affect convergence negatively, there is a dependence
on the number of parameters. Higher number of parameters may in-
fluence the initialization stage, providing a poor guess of the initial
parameters, that may lead to a convergence in some local minima
of the loss function.

Pattern Types. We chose patterns that are quite different in the
types of elements they are comprised of. In particular, we showed
examples using lines, circles, rectangles, as well as SVG drawings
represented as quadratic Bezier curves. By changing element types
and pattern structure, our framework supports a large variety of ex-
amples. In fact, patterns that are visually quite different can be ob-
tained from the same procedural function, as shown in Figure 2.
Overall, we found our method to work well in all these cases.
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Figure 11: For patterns with high number of parameters, 25 in this
figure, the algorithm may converge to a local minimum.
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Figure  Generator Parameters ~ Shapes MSE
Fig. 1 = Honeycomb 4 198 0.0193
Spades 7 11 0.0001
Rectangles 8 21 04375
Circlesl 12 30 0.0009
Stripes 14 34 0.1536
Fig.2  Circles2 14 25 0.0773
Circles2 14 25 0.0004
Circles2 14 25 0.0015
Circles2 14 18  0.0025
Fig.3  Shingles 6 30 0.0001
Fig. 4  Circles2 14 61 0.2167
Fig.7  Circles3 7 36 0.0018
Fig. 8  Rectangles 8 25 0.3058

Table 1: Statistics of the optimized patterns, including number of
parameters, number of shapes, and MSE of the fitted parameter set.

Unsupported Patterns. While our algorithm supports a large vari-
ety of patterns, some cases are still not supported, since they would
require changes to how patterns are specified via a target image.
We leave them for future work.

In particular, we do not support opacity in the color definition,
since we treat the element as individual shapes. The concern, in
this case, is how to disambiguate non-opaque colors from opaque
ones in the target images. [RGF*20] shows a promising direction
using texture synthesis, that we might be able to adapt to procedural
patterns as well. Furthermore, we only support solid fill and stroke
colors since the per-color SDF definition is not well defined for
linear or radial color gradients.

Stochastic patterns are also a concern since it is unclear what the
target image should be. The authors of [SLH*20] acknowledge this
issue and provide an ad-hoc solution for raster texture with small
variations that effectively freezes the randomization elements in the
pattern. While this idea may work in their domain, fully-stochastic
vector patterns may take any arrangement, so it is unclear if a single
target image is sufficient to determine their parameters.

6. Conclusions

In this paper, we present a method for computing the parameters
of procedural vector patterns that match a given input image. The
key idea of our work is to cast the optimization problem in terms of
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pattern distance fields, that are made differentiable using automatic
differentiation and a careful choice of shape combination opera-
tors. In future work, we plan to extend our work to investigate new
formulations that support opacity and stochastic patterns, together
with exploring the possibility of optimizing the shape element con-
trol points as well.
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